Geomorphologic Analysis of Drainage Networks on Mars

نویسنده

  • KERESZTURI ÁKOS
چکیده

Altogether 327 valleys and their 314 cross-sectional profiles were analyzed on Mars, including width, depth, length, eroded volume, drainage and spatial density, as well as the network structure. According to this systematic analysis, five possible drainage network types were identified such as (a) small valleys, (b) integrated small valleys, (c) individual, medium-sized valleys, (d) unconfined, anastomosing outflow valleys, and (e) confined outflow valleys. Measuring their various morphometric parameters, these five networks differ from each other in terms of parameters of the eroded volume, drainage density and depth values. This classification is more detailed than those described in the literature previously and correlated to several numerical parameters for the first time. These different types were probably formed during different periods of the evolution of Mars, and sprung from differently localized water sources, and they could be correlated to similar fluvial network types from the Earth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison Density and Fractal Dimension of Drainage Networks in Different Scales and Precision Different (Case Study: Ilam Watersheds)

Every phenomena in the nature, despite the complexity of the subject, has certain rules and regulations. River pattern and behavior as one of the most complex natural phenomena to this is not an exception. Depending on geomorphologic, climatic, topographic and erosive conditions, the waterways exhibit different patterns and behaviors. One of the parameters which can be achieved using the comple...

متن کامل

Fractal analysis of drainage basins on Mars

[1] We used statistical properties of drainage networks on Mars as a measure of martian landscape morphology and an indicator of landscape evolution processes. We utilize the Mars Orbiter Laser Altimeter (MOLA) data to construct digital elevation maps (DEMs) of several, mostly ancient, martian terrains. Drainage basins and channel networks are computationally extracted from DEMs and their struc...

متن کامل

Extraction of Martian valley networks from digital topography

[1] We have developed a novel method for delineating valley networks on Mars. The valleys are inferred from digital topography by an autonomous computer algorithm as drainage networks, instead of being manually mapped from images. Individual drainage basins are precisely defined and reconstructed to restore flow continuity disrupted by craters. Drainage networks are extracted from their underly...

متن کامل

Regional model presentation for peak discharge estimation in ungauged drainage basin using geomorphologic, Synyder, SCS and triangular models (case study: Kan drainage basin)

With regard to the importance of instantaneous peak discharge estimation for watershed management study, and due to the lack of and unqualified climatic and hydrologic data for estimation and measurement in countries such as Iran, researchers were obliged to establish a link between constant parameters (geomorphologic) and variables (hydrologic) to present models with minimum dependence on clim...

متن کامل

New Data Reveal Mature, Integrated Drainage Systems on Mars Indicative of Past

Introduction: Valley network systems on Mars remain the most unequivocal evidence that water carved the surface of the planet in the distant past and the climate was different than today. Most of these systems date from the Noachian [1], the p eriod of heavy bombardment which is >3.7 Ga [2], although local or regional formation seems to have continued to more recent times [3]. The discovery of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012